Fabrication and characterisation of collagen/pullulan ultra-thin fibers by electrospinning
[Display omitted] •The spinnability of the COL solutions was improved by introducing PUL.•Interaction between COL and PUL molecules (hydrogen bonding) was assessed.•More than 36% of the triple helix fraction of collagen was retained in ultra-thin fibers.•We investigated the effect of solution proper...
Gespeichert in:
Veröffentlicht in: | Food Chemistry: X 2024-03, Vol.21, p.101138-101138, Article 101138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•The spinnability of the COL solutions was improved by introducing PUL.•Interaction between COL and PUL molecules (hydrogen bonding) was assessed.•More than 36% of the triple helix fraction of collagen was retained in ultra-thin fibers.•We investigated the effect of solution properties on COL/PUL ultra-thin fibers.
Collagen electrospun fibers are promising materials for food packaging and tissue engineering. The conventional electrospinning of collagen, however, is usually carried out by dissolving it in organic reagents, which are toxic. In this study, collagen/pullulan (COL/PUL) ultra-thin fibers were prepared by electrospinning using acetic acid as a solvent. Compared to the conventional preparation method, the proposed method is safe and does not produce toxic solvent residues. The introduction of PUL increased the degree of molecular entanglement in the solution, so the viscosity of the COL/PUL electrospun solution increased from 0.50 ± 0.01 Pa∙s to 4.40 ± 0.08 Pa∙s, and the electrical conductivity decreased from 1954.00 ± 1.00 mS/cm to 1372.33 ± 0.58 mS/cm. Scanning electron microscopy analysis confirmed that PUL improved the spinnability of COL, and smooth, defect-free COL/PUL ultra-thin fibers with diameters of 215.32 ± 40.56 nm and 240.97 ± 53.93 nm were successfully prepared at a viscosity of greater than 1.18 Pa∙s. As the proportion of PUL increased, intramolecular hydrogen bonds became the dominant interaction between COL and PUL. The intermolecular hydrogen bonding content decreased from 52.05 % to 36.45 %, and the intramolecular hydrogen bonding content increased from 46.11 % to 62.95 %. The COL was gradually unfolded, the content of α-helices decreased from 33.57 % to 25.91 % and the random coils increased from 34.22 % to 40.09 %. More than 36 % of the triple helix fraction of COL was retained by the COL/PUL ultra-thin fibers, whereas only 16 % of the triple helix fraction of COL was retained by the COL nanofibers prepared with 2.2.2-trifluoroethanol. These results could serve as a reference for the development of green food COL-based fibers. |
---|---|
ISSN: | 2590-1575 2590-1575 |
DOI: | 10.1016/j.fochx.2024.101138 |