Heterogeneous Retirement Savings Strategy Selection with Reinforcement Learning

Saving and investment behaviour is crucial for all individuals to guarantee their welfare during work-life and retirement. We introduce a deep reinforcement learning model in which agents learn optimal portfolio allocation and saving strategies suitable for their heterogeneous profiles. The environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-06, Vol.25 (7), p.977
Hauptverfasser: Ozhamaratli, Fatih, Barucca, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Saving and investment behaviour is crucial for all individuals to guarantee their welfare during work-life and retirement. We introduce a deep reinforcement learning model in which agents learn optimal portfolio allocation and saving strategies suitable for their heterogeneous profiles. The environment is calibrated with occupation- and age-dependent income dynamics. The research focuses on heterogeneous income trajectories dependent on agents' profiles and incorporates the parameterisation of agents' behaviours. The model provides a new flexible methodology to estimate lifetime consumption and investment choices for individuals with heterogeneous profiles.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25070977