An interacting, higher derivative, boundary conformal field theory
A bstract We consider a higher derivative scalar field theory in the presence of a boundary and a classically marginal interaction. We first investigate the free limit where the scalar obeys the square of the Klein-Gordon equation. In precisely d = 6 dimensions, modules generated by d − 2 and d − 4...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2024-12, Vol.2024 (12), p.133-41, Article 133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We consider a higher derivative scalar field theory in the presence of a boundary and a classically marginal interaction. We first investigate the free limit where the scalar obeys the square of the Klein-Gordon equation. In precisely
d
= 6 dimensions, modules generated by
d
− 2 and
d
− 4 dimensional primaries merge to form a staggered module. We compute the conformal block associated with this module and show that it is a generalized eigenvector of the Casimir operator. Next we include the effect of a classically marginal interaction that involves four scalar fields and two derivatives. The theory has an infrared fixed point in
d
= 6 −
ϵ
dimensions. We compute boundary operator anomalous dimensions and boundary OPE coefficients at leading order in the
ϵ
expansion for the allowed conformal boundary conditions. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP12(2024)133 |