An interacting, higher derivative, boundary conformal field theory

A bstract We consider a higher derivative scalar field theory in the presence of a boundary and a classically marginal interaction. We first investigate the free limit where the scalar obeys the square of the Klein-Gordon equation. In precisely d = 6 dimensions, modules generated by d − 2 and d − 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-12, Vol.2024 (12), p.133-41, Article 133
Hauptverfasser: Herzog, Christopher P., Zhou, Yanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We consider a higher derivative scalar field theory in the presence of a boundary and a classically marginal interaction. We first investigate the free limit where the scalar obeys the square of the Klein-Gordon equation. In precisely d = 6 dimensions, modules generated by d − 2 and d − 4 dimensional primaries merge to form a staggered module. We compute the conformal block associated with this module and show that it is a generalized eigenvector of the Casimir operator. Next we include the effect of a classically marginal interaction that involves four scalar fields and two derivatives. The theory has an infrared fixed point in d = 6 − ϵ dimensions. We compute boundary operator anomalous dimensions and boundary OPE coefficients at leading order in the ϵ expansion for the allowed conformal boundary conditions.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2024)133