Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin

Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient 13C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2020-02, Vol.23 (2), p.100855-100855, Article 100855
Hauptverfasser: Quek, Lake-Ee, Krycer, James R., Ohno, Satoshi, Yugi, Katsuyuki, Fazakerley, Daniel J., Scalzo, Richard, Elkington, Sarah D., Dai, Ziwei, Hirayama, Akiyoshi, Ikeda, Satsuki, Shoji, Futaba, Suzuki, Kumi, Locasale, Jason W., Soga, Tomoyoshi, James, David E., Kuroda, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient 13C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation. [Display omitted] •An efficient algorithm to solve ODEs generated for large models•Each flux is modeled independently using B-splines•Adipocyte metabolic network showed modular response dynamics•Carbon bookkeeping showed the majority of glucose converted into lactate Biological Sciences; Flux Data; Metabolomics; Metabolic Flux Analysis
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2020.100855