Multiscale Sensing of Bone-Implant Loosening for Multifunctional Smart Bone Implants: Using Capacitive Technologies for Precision Controllability

The world population growth and average life expectancy rise have increased the number of people suffering from non-communicable diseases, namely osteoarthritis, a disorder that causes a significant increase in the years lived with disability. Many people who suffer from osteoarthritis undergo repla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (7), p.2531
Hauptverfasser: Peres, Inês, Rolo, Pedro, Ferreira, Jorge A F, Pinto, Susana C, Marques, Paula A A P, Ramos, António, Soares Dos Santos, Marco P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The world population growth and average life expectancy rise have increased the number of people suffering from non-communicable diseases, namely osteoarthritis, a disorder that causes a significant increase in the years lived with disability. Many people who suffer from osteoarthritis undergo replacement surgery. Despite the relatively high success rate, around 10% of patients require revision surgeries, mostly because existing implant technologies lack sensing devices capable of monitoring the bone-implant interface. Among the several monitoring methodologies already proposed as substitutes for traditional imaging methods, cosurface capacitive sensing systems hold the potential to monitor the bone-implant fixation states, a mandatory capability for long-term implant survival. A multifaceted study is offered here, which covers research on the following points: (1) the ability of a cosurface capacitor network to effectively monitor bone loosening in extended peri-implant regions and according to different stimulation frequencies; (2) the ability of these capacitive architectures to provide effective sensing in interfaces with hydroxyapatite-based layers; (3) the ability to control the operation of cosurface capacitive networks using extracorporeal informatic systems. In vitro tests were performed using a web-based network sensor composed of striped and interdigitated capacitive sensors. Hydroxyapatite-based layers have a minor effect on determining the fixation states; the effective operation of a sensor network-based solution communicating through a web server hosted on Raspberry Pi was shown. Previous studies highlight the inability of current bone-implant fixation monitoring methods to significantly reduce the number of revision surgeries, as well as promising results of capacitive sensing systems to monitor micro-scale and macro-scale bone-interface states. In this study, we found that extracorporeal informatic systems enable continuous patient monitoring using cosurface capacitive networks with or without hydroxyapatite-based layers. Findings presented here represent significant advancements toward the design of future multifunctional smart implants.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22072531