Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains

Ionotropic glutamate receptors (iGluRs) mediate signal transmission in the brain and are important drug targets. Structural studies show snapshots of iGluRs, which provide a mechanistic understanding of gating, yet the rapid motions driving the receptor machinery are largely elusive. Here we detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-09, Vol.4 (1), p.1056-1056, Article 1056
Hauptverfasser: Rajab, Suhaila, Bismin, Leah, Schwarze, Simone, Pinggera, Alexandra, Greger, Ingo H., Neuweiler, Hannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ionotropic glutamate receptors (iGluRs) mediate signal transmission in the brain and are important drug targets. Structural studies show snapshots of iGluRs, which provide a mechanistic understanding of gating, yet the rapid motions driving the receptor machinery are largely elusive. Here we detect kinetics of conformational change of isolated clamshell-shaped ligand-binding domains (LBDs) from the three major iGluR sub-types, which initiate gating upon binding of agonists. We design fluorescence probes to measure domain motions through nanosecond fluorescence correlation spectroscopy. We observe a broad kinetic spectrum of LBD dynamics that underlie activation of iGluRs. Microsecond clamshell motions slow upon dimerization and freeze upon binding of full and partial agonists. We uncover allosteric coupling within NMDA LBD hetero-dimers, where binding of L-glutamate to the GluN2A LBD stalls clamshell motions of the glycine-binding GluN1 LBD. Our results reveal rapid LBD dynamics across iGluRs and suggest a mechanism of negative allosteric cooperativity in NMDA receptors. Rajab et al. study the dynamics of closure of ligand binding domains (LBD) of the three major ionotropic glutamate receptor subtypes. They find pronounced sub-millisecond fluctuations in the apo state of LBDs from all three sub-types and reveal a pathway of allosteric communication in LBD dynamics across the dimerization interface
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02605-0