A multi-task approach to face deblurring

Image deblurring is a foundational problem with numerous application, and the face deblurring subject is one of the most interesting branches. We propose a convolutional neural network (CNN)-based architecture that embraces multi-scale deep features. In this paper, we address the deblurring problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on wireless communications and networking 2019-01, Vol.2019 (1), p.1-11, Article 23
Hauptverfasser: Shen, Ziyi, Xu, Tingfa, Zhang, Jizhou, Guo, Jie, Jiang, Shenwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image deblurring is a foundational problem with numerous application, and the face deblurring subject is one of the most interesting branches. We propose a convolutional neural network (CNN)-based architecture that embraces multi-scale deep features. In this paper, we address the deblurring problems with transfer learning via a multi-task embedding network; the proposed method is effective at restoring more implicit and explicit structures from the blur images. In addition, by introducing perceptual features in the deblurring process and adopting a generative adversarial network, we develop a new method to deblur the face images with reservation of more facial features and details. Extensive experiments compared with state-of-the-art deblurring algorithms demonstrate the effectiveness of the proposed approach.
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-019-1350-3