Recovering Matrices of Economic Flows from Incomplete Data and a Composite Prior

In several socioeconomic applications, matrices containing information on flows-trade, income or migration flows, for example–are usually not constructed from direct observation but are rather estimated, since the compilation of the information required is often extremely expensive and time-consumin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2010-03, Vol.12 (3), p.516-527
1. Verfasser: Fernández-Vázquez, Esteban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In several socioeconomic applications, matrices containing information on flows-trade, income or migration flows, for example–are usually not constructed from direct observation but are rather estimated, since the compilation of the information required is often extremely expensive and time-consuming. The estimation process takes as point of departure another matrix which is adjusted until it optimizes some divergence criterion and simultaneously is consistent with some partial information-row and column margins–of the target matrix. Among all the possible criteria to be considered, one of the most popular is the Kullback-Leibler divergence [1], leading to the well-known Cross-Entropy technique. This paper proposes the use of a composite Cross-Entropy approach that allows for introducing a mixture of two types of a priori information–two possible matrices to be included as point of departure in the estimation process. By means of a Monte Carlo simulation experiment, we will show that under some circumstances this approach outperforms other competing estimators. Besides, a real-world case with a matrix of interregional trade is included to show the applicability of the suggested technique.
ISSN:1099-4300
1099-4300
DOI:10.3390/e12030516