High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films
Wurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal stu...
Gespeichert in:
Veröffentlicht in: | APL materials 2022-01, Vol.10 (1), p.011115-011115-6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal studies have been conducted on homoepitaxially grown AlN. In this study, the thickness dependent k and thermal boundary conductance G of homoepitaxial AlN thin films were systematically studied using the optical pump–probe method of frequency-domain thermoreflectance. Our results show that k increases with the thickness and k values are among the highest reported for film thicknesses of 200 nm, 500 nm, and 1 μm, with values of 71.95, 152.04, and 195.71 W/(mK), respectively. Our first-principles calculations show good agreement with our measured data. Remarkably, the G between the epilayer and the substrate reported high values of 328, 477, 1180, and 2590 MW/(m2K) for sample thicknesses of 200 nm, 500 nm, 1 μm, and 3 μm, respectively. The high k and ultrahigh G of homoepitaxially grown AlN are very promising for efficient heat dissipation, which helps in device design and has advanced applications in micro-electromechanical systems, ultraviolet photonics, and high-power electronics. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/5.0078155 |