High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films

Wurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2022-01, Vol.10 (1), p.011115-011115-6
Hauptverfasser: Alvarez-Escalante, Gustavo, Page, Ryan, Hu, Renjiu, Xing, Huili Grace, Jena, Debdeep, Tian, Zhiting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal studies have been conducted on homoepitaxially grown AlN. In this study, the thickness dependent k and thermal boundary conductance G of homoepitaxial AlN thin films were systematically studied using the optical pump–probe method of frequency-domain thermoreflectance. Our results show that k increases with the thickness and k values are among the highest reported for film thicknesses of 200 nm, 500 nm, and 1 μm, with values of 71.95, 152.04, and 195.71 W/(mK), respectively. Our first-principles calculations show good agreement with our measured data. Remarkably, the G between the epilayer and the substrate reported high values of 328, 477, 1180, and 2590 MW/(m2K) for sample thicknesses of 200 nm, 500 nm, 1 μm, and 3 μm, respectively. The high k and ultrahigh G of homoepitaxially grown AlN are very promising for efficient heat dissipation, which helps in device design and has advanced applications in micro-electromechanical systems, ultraviolet photonics, and high-power electronics.
ISSN:2166-532X
2166-532X
DOI:10.1063/5.0078155