Chitosan-Oxidized Pullulan Hydrogels Loaded with Essential Clove Oil: Synthesis, Characterization, Antioxidant and Antimicrobial Properties
Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was e...
Gespeichert in:
Veröffentlicht in: | Gels 2024-04, Vol.10 (4), p.227 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was emulsified and stabilized in a chitosan (CS) solution, which was further hardened by Schiff base covalent cross-linking with oxidized pullulan (OP). Second, the hydrogels were subjected to freeze-thaw cycles and, as a result, the clove oil was stabilized in physically cross-linked polymeric walls. Moreover, due to cryogelation, the obtained hydrogels exhibited sponge-like porous interconnected morphology (160-250 µm). By varying the clove oil content in the starting emulsion and the degree of cross-linking, the hydrogels displayed a high water retention capacity (swelling ratios between 1300 and 2000%), excellent elastic properties with fast shape recovery (20 s) after 70% compression, and controlled in vitro clove oil release in simulated skin conditions for 360 h. Furthermore, the prepared clove oil-loaded hydrogels had a strong scavenging activity of 83% and antibacterial and antifungal properties, showing a bacteriostatic effect after 48 and 72 h against
and
. Our results recommend the new clove oil-embedded emulsion hydrogels as promising future materials for application as wound dressings. |
---|---|
ISSN: | 2310-2861 2310-2861 |
DOI: | 10.3390/gels10040227 |