Research on Rolling Bearing Fault Diagnosis Based on Volterra Kernel Identification and KPCA

A rolling bearing fault diagnosis method based on the Volterra series and kernel principal component analysis (KPCA) is proposed. In the proposed method, first, the improved genetic algorithm (IGA) is used to identify the Volterra series model of the bearing in four states: normal, rolling element f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2023-08, Vol.2023, p.1-9
Hauptverfasser: Wang, Yahui, Dong, Rong, Wang, Xinchao, Zhang, Xunying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rolling bearing fault diagnosis method based on the Volterra series and kernel principal component analysis (KPCA) is proposed. In the proposed method, first, the improved genetic algorithm (IGA) is used to identify the Volterra series model of the bearing in four states: normal, rolling element fault, inner ring fault, and outer ring fault. The Volterra time-domain kernel is used as the feature vector for kernel principal component analysis to classify and identify the faults. The feasibility of the fault diagnosis method of the Volterra level and kernel principal component analysis is verified by the experimental results.
ISSN:1070-9622
1875-9203
DOI:10.1155/2023/5600690