Model Checking Synchronized Products of Infinite Transition Systems
Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what c...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2007-11, Vol.3, Issue 4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Formal verification using the model checking paradigm has to deal with two
aspects: The system models are structured, often as products of components, and
the specification logic has to be expressive enough to allow the formalization
of reachability properties. The present paper is a study on what can be
achieved for infinite transition systems under these premises. As models we
consider products of infinite transition systems with different synchronization
constraints. We introduce finitely synchronized transition systems, i.e.
product systems which contain only finitely many (parameterized) synchronized
transitions, and show that the decidability of FO(R), first-order logic
extended by reachability predicates, of the product system can be reduced to
the decidability of FO(R) of the components. This result is optimal in the
following sense: (1) If we allow semifinite synchronization, i.e. just in one
component infinitely many transitions are synchronized, the FO(R)-theory of the
product system is in general undecidable. (2) We cannot extend the expressive
power of the logic under consideration. Already a weak extension of first-order
logic with transitive closure, where we restrict the transitive closure
operators to arity one and nesting depth two, is undecidable for an
asynchronous (and hence finitely synchronized) product, namely for the infinite
grid. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-3(4:5)2007 |