Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium
Current research on pedestrian flows has mainly focused on evacuation optimization during or after emergencies; however, crowd management before emergencies has received little attention. This paper examines the management of a Safe Pedestrian Flow Rate, in which the Bayesian-Nash Equilibrium mimics...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2019-01, Vol.2019 (2019), p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current research on pedestrian flows has mainly focused on evacuation optimization during or after emergencies; however, crowd management before emergencies has received little attention. This paper examines the management of a Safe Pedestrian Flow Rate, in which the Bayesian-Nash Equilibrium mimics pedestrians’ decision-making, and a multiagent system is employed to reproduce pedestrians’ interactions. In the model, the pedestrian tunnel is divided into cells, with each pedestrian in a cell receiving a utility depending on the distance to the exit and the number of pedestrians in the cell. Then, each pedestrian uses the Bayesian-Nash Equilibrium to search for the target cell with maximum expected utility, moves in, and makes next decision until exiting the tunnel. The simulation model is calibrated and validated from a real scenario. Finally, from the experimental data collected from different simulation scenarios, this research reaches the conclusion that the Safe Pedestrian Flow Rate increases by about 2.96ped/s as the tunnel width expanded by 1m. This paper offers a novel method for reducing potential losses caused by crowd emergencies and can be a valuable reference for managing pedestrian flows and designing public places. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/7942483 |