Association between maternal urinary manganese concentrations and newborn telomere length: Results from a birth cohort study

Telomere length (TL) is a biomarker for biological aging, and the initial setting of TL at birth is a determinant factor of TL in later life. Newborn TL is sensitive to maternal metals concentrations, while study about the association between maternal manganese (Mn) concentrations and newborn TL was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2021-04, Vol.213, p.112037, Article 112037
Hauptverfasser: Bi, Jianing, Wu, Mingyang, Liu, Yunyun, Song, Lulu, Wang, Lulin, Liu, Qing, Chen, Kai, Xiong, Chao, Li, Yuanyuan, Xia, Wei, Xu, Shunqing, Zhou, Aifen, Wang, Youjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Telomere length (TL) is a biomarker for biological aging, and the initial setting of TL at birth is a determinant factor of TL in later life. Newborn TL is sensitive to maternal metals concentrations, while study about the association between maternal manganese (Mn) concentrations and newborn TL was not found. Our study aimed to investigate whether newborn TL is related to maternal Mn concentrations. Data were collected from a birth cohort study of 762 mother-newborn pairs conducted from November 2013 to March 2015 in Wuhan, China. We measured the Mn concentrations in spot urine samples collected during three trimesters by inductively coupled plasma mass spectrometry (ICP-MS) and relative cord blood TL by quantitative real-time polymerase chain reaction (qPCR). We applied multiple informant models to investigate the associations between maternal Mn concentrations and cord blood TL. The geometric mean of creatinine-corrected urinary Mn concentrations were 1.58 μg/g creatinine, 2.53 μg/g creatinine, and 2.62 μg/g creatinine in the first, second, and third trimester, respectively. After adjusting for potential confounders, a doubling of maternal urinary Mn concentration during the second trimester was related to a 2.10% (95% CI: 0.25%, 3.99%) increase in cord blood TL. Mothers with the highest tertile of urinary Mn concentrations during the second trimester had a 9.67% (95% CI: 2.13%, 17.78%) longer cord blood TL than those with the lowest tertile. This association was more evident in male infants. No relationship was found between maternal urinary Mn concentrations and cord blood TL during the first and third trimesters in our study. Our findings suggested that maternal Mn concentration during the second trimester was positively associated with newborn TL. These results might provide an epidemiology evidence on the protective role of maternal Mn for newborn TL and offer clues for the early prevention of telomere shortening related diseases. •The first study to assess the effect of maternal manganese concentration on newborn telomere length.•Newborn telomere length increased with maternal manganese concentrations.•The second trimester was the critical window of maternal manganese concentrations.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112037