Advances in Thermochemical Synthesis and Characterization of the Prepared Copper/Alumina Nanocomposites

This paper presents thermochemical synthesis of copper/alumina nanocomposites in a Cu-Al2O3 system with 1–2.5 wt.% of alumina and their characterization, which included: transmission electron microscopy: focused ion beam (FIB), analytical electron microscopy (AEM) and high resolution transmission el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2020-06, Vol.10 (6), p.719
Hauptverfasser: Korać, Marija, Kamberović, Željko, Anđić, Zoran, Stopić, Srećko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents thermochemical synthesis of copper/alumina nanocomposites in a Cu-Al2O3 system with 1–2.5 wt.% of alumina and their characterization, which included: transmission electron microscopy: focused ion beam (FIB), analytical electron microscopy (AEM) and high resolution transmission electron microscopy (HRTEM). Thermodynamic analysis was used to study the formation mechanism of desirable products during drying, thermal decomposition and reduction processes. Upon synthesis of powders, samples were cold pressed (2 GPa) in tools dimension 8 × 32 × 2 mm and sintered at temperatures within the range 800–1000 °C for 15 to 120 min in a hydrogen atmosphere. Results of characterization showed that dispersion-strengthened compacts could be produced by sintering of thermo-chemically prepared Cu-Al2O3 powders with properties suitable for material application, such as a contact material exhibiting high strength and high electrical conductivity at the same time. Additional research was carried out in order to analyze the application of the obtained nanocomposite powders for the synthesis of copper/alumina nanocomposites by a new method, which is a combination of a thermochemical procedure and mechanical alloying. The measured values of an electric conductivity and hardness were compared with ones in literature, confirming an advantage of the proposed combined strategy.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10060719