Higher-order topological insulator in cubic semiconductor quantum wells

The search for exotic new topological states of matter in widely accessible materials, for which the manufacturing process is mastered, is one of the major challenges of the current topological physics. Here we predict higher order topological insulator state in quantum wells based on the most commo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-10, Vol.11 (1), p.21060-21060, Article 21060
1. Verfasser: Krishtopenko, Sergey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The search for exotic new topological states of matter in widely accessible materials, for which the manufacturing process is mastered, is one of the major challenges of the current topological physics. Here we predict higher order topological insulator state in quantum wells based on the most common semiconducting materials. By successively deriving the bulk and boundary Hamiltonians, we theoretically prove the existence of topological corner states due to cubic symmetry in quantum wells with double band inversion. We show that the appearance of corner states does not depend solely on the crystallographic orientation of the meeting edges, but also on the growth orientation of the quantum well. Our theoretical results significantly extend the application potential of topological quantum wells based on IV, II–VI and III–V semiconductors with diamond or zinc-blende structures.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-00577-z