Learning a Memory-Enhanced Multi-Stage Goal-Driven Network for Egocentric Trajectory Prediction
We propose a memory-enhanced multi-stage goal-driven network (ME-MGNet) for egocentric trajectory prediction in dynamic scenes. Our key idea is to build a scene layout memory inspired by human perception in order to transfer knowledge from prior experiences to the current scenario in a top-down mann...
Gespeichert in:
Veröffentlicht in: | Biomimetics (Basel, Switzerland) Switzerland), 2024-07, Vol.9 (8), p.462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a memory-enhanced multi-stage goal-driven network (ME-MGNet) for egocentric trajectory prediction in dynamic scenes. Our key idea is to build a scene layout memory inspired by human perception in order to transfer knowledge from prior experiences to the current scenario in a top-down manner. Specifically, given a test scene, we first perform scene-level matching based on our scene layout memory to retrieve trajectories from visually similar scenes in the training data. This is followed by trajectory-level matching and memory filtering to obtain a set of goal features. In addition, a multi-stage goal generator takes these goal features and uses a backward decoder to produce several stage goals. Finally, we integrate the above steps into a conditional autoencoder and a forward decoder to produce trajectory prediction results. Experiments on three public datasets, JAAD, PIE, and KITTI, and a new egocentric trajectory prediction dataset, Fuzhou DashCam (FZDC), validate the efficacy of the proposed method. |
---|---|
ISSN: | 2313-7673 2313-7673 |
DOI: | 10.3390/biomimetics9080462 |