A systematic literature review on smart and personalized ventilation using CO2 concentration monitoring and control

Smart and personalized ventilation systems have been demonstrated with high performance in creating a healthy and energy-efficient indoor environment, but they have been rarely comprehensively summarized and explored in previous studies. With the progressive development of various terminal devices a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2022-11, Vol.8, p.7523-7536
Hauptverfasser: Song, Ge, Ai, Zhengtao, Liu, Zhengxuan, Zhang, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Smart and personalized ventilation systems have been demonstrated with high performance in creating a healthy and energy-efficient indoor environment, but they have been rarely comprehensively summarized and explored in previous studies. With the progressive development of various terminal devices and control technologies, personalized ventilation based on intelligent control is potentially a promising way to achieve efficient control and energy savings in human micro-environments. This study comprehensively summarizes and analyzes the recent studies and common utilization forms of smart ventilation and PV systems that are based on CO2 concentration control, to pave path and provide some guidelines for their integration application for reducing energy consumption and improving indoor thermal comfort. Research shows that the combination of personalized ventilation and smart ventilation is an essential development for ventilation systems. Smart ventilation with demand control logic based on CO2 concentration has been mature enough to effectively improve the effectiveness and comfortable performance of personalized ventilation. However, switching from traditional air conditioning systems to personalized ventilation still requires improved sensors and intelligent control algorithms. In addition, this paper also summarizes the exploratory studies and potential application analysis of machine-learning theories to improve intelligent control of personalized ventilation. To this end, this paper identifies future tendencies for advanced theories, integrated systems, and devices in personalized ventilation systems. •Critical analysis CO2 concentration as a ventilation system’s control parameter.•Latest development on personalized ventilation system.•Intelligence application of control technology for personalized ventilation.•Tremendous application prospects of smart personalized ventilation system.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.05.243