Eye-Resolvable Surface-Plasmon-Enhanced Fluorescence Temperature Sensor
Temperature sensors are widely used in important fields such as daily home, medical care, and aerospace as a commonly used device for measuring temperature. Traditional temperature sensors such as thermocouples, thermal resistances, and infrared sensors are technically mature; however, they have lim...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-11, Vol.12 (22), p.4019 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temperature sensors are widely used in important fields such as daily home, medical care, and aerospace as a commonly used device for measuring temperature. Traditional temperature sensors such as thermocouples, thermal resistances, and infrared sensors are technically mature; however, they have limitations in the application environment, temperature measurement range, and temperature measurement accuracy. An eye-resolvable surface plasmon-enhanced fluorescence temperature sensor based on dual-emission Ag@SiO
@CdS/ZnS composite nanoparticle film with multiple-parameter detectable signals and high response sensitivity was proposed in this work. The temperature sensor's x-chromaticity coordinate varied from 0.299 to 0.358 in the range of 77-297 K, while the y-chromaticity coordinate varied from 0.288 to 0.440, displaying eye-resolvable surface plasmon-enhanced fluorescence. The ratiometric response of two isolated photoluminescence (PL) peak-integrated areas located around 446 and 592 nm was found to be significantly temperature dependent, with a thermal sensitivity of 1.4% K
, which can be used as an additional parameter to measure the precise temperature. Furthermore, the surface state emission peak intensity was linearly related to temperature, with a correlation index Adj. R-Square of 99.8%. Multiple independent temperature estimates can help with self-calibration and improve the measurement accuracy. Our findings show that the designed sensors can detect low temperatures while maintaining stability and reproducibility. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12224019 |