Paragraph: a graph-based structural variant genotyper for short-read sequence data

Accurate detection and genotyping of structural variations (SVs) from short-read data is a long-standing area of development in genomics research and clinical sequencing pipelines. We introduce Paragraph, an accurate genotyper that models SVs using sequence graphs and SV annotations. We demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2019-12, Vol.20 (1), p.291-291, Article 291
Hauptverfasser: Chen, Sai, Krusche, Peter, Dolzhenko, Egor, Sherman, Rachel M, Petrovski, Roman, Schlesinger, Felix, Kirsche, Melanie, Bentley, David R, Schatz, Michael C, Sedlazeck, Fritz J, Eberle, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate detection and genotyping of structural variations (SVs) from short-read data is a long-standing area of development in genomics research and clinical sequencing pipelines. We introduce Paragraph, an accurate genotyper that models SVs using sequence graphs and SV annotations. We demonstrate the accuracy of Paragraph on whole-genome sequence data from three samples using long-read SV calls as the truth set, and then apply Paragraph at scale to a cohort of 100 short-read sequenced samples of diverse ancestry. Our analysis shows that Paragraph has better accuracy than other existing genotypers and can be applied to population-scale studies.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1909-7