An efficient method for classification of alcoholic and normal electroencephalogram signals based on selection of an appropriate feature

Background: Alcohol addiction contributes to disorders in brain's normal patterns. Analysis of electroencephalogram (EEG) signal helps to diagnose and classify alcoholic and normal EEG signal. Methods: One-second EEG signal was applied to classify alcoholic and normal EEG signal. To determine d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical signals and sensors 2023-01, Vol.13 (1), p.11-20
Hauptverfasser: Dorvashi, Maryam, Behzadfar, Neda, Shahgholian, Ghazanfar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Alcohol addiction contributes to disorders in brain's normal patterns. Analysis of electroencephalogram (EEG) signal helps to diagnose and classify alcoholic and normal EEG signal. Methods: One-second EEG signal was applied to classify alcoholic and normal EEG signal. To determine discriminative feature and EEG channel between the alcoholic and normal EEG signal, different frequency and non-frequency features of EEG signal, including power of EEG signal, permutation entropy (PE), approximate entropy (ApEn), katz fractal dimension (katz FD) and Petrosion fractal dimension (Petrosion FD) were extracted from alcoholic and normal EEG signal. Statistical analysis and Davis-Bouldin criterion (DB) were utilized to specify and select most discriminative feature and EEG channel between the alcoholic and normal EEG signal. Results: Results of statistical analysis and DB criterion showed that the Katz FD in FP2 channel showed the best discrimination between the alcoholic and normal EEG signal. The Katz FD in FP2 channel showed the accuracies of 98.77% and 98.5% by two classifiers with 10-fold cross validation. Conclusion: This method helps to diagnose alcoholic and normal EEG signal with the minimum number of feature and channel, which provides low computational complexity. This is helpful to faster and more accurate classification of normal and alcoholic subjects.
ISSN:2228-7477
2228-7477
DOI:10.4103/jmss.jmss_183_21