Microbial Conversion of Cheese Whey to Polyhydroxybutyrate (PHB) via Statistically Optimized Cultures

The intended circular economy for plastics envisages that they will be partially replaced by bio-based polymers in the future. In this work, the natural polyester polyhydroxybutyrate (PHB) was produced by Azohydromonas lata using cheese whey (CW) as a low-cost substrate. Initially, CW was evaluated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fermentation (Basel) 2023-07, Vol.9 (7), p.624
Hauptverfasser: Penloglou, Giannis, Pavlou, Alexandros, Kiparissides, Costas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intended circular economy for plastics envisages that they will be partially replaced by bio-based polymers in the future. In this work, the natural polyester polyhydroxybutyrate (PHB) was produced by Azohydromonas lata using cheese whey (CW) as a low-cost substrate. Initially, CW was evaluated as the sole carbon source for PHB production; it was found to be efficient and comparable to PHB production with pure sugars, such as saccharose or glucose, even when mild (with dilute acid) hydrolysis of cheese whey was performed instead of enzymatic hydrolysis. An additional series of experiments was statistically designed using the Taguchi method, and a dual optimization approach was applied to maximize the intracellular biopolymer content (%PHB, selected as a quantitative key performance indicator, KPI) and the weight average molecular weight of PHB (Mw, set as a qualitative KPI). Two different sets of conditions for the values of the selected bioprocess parameters were identified: (1) a carbon-to-nitrogen ratio (C/N) of 10 w/w, a carbon-to-phosphorous ratio (C/P) of 1.9 w/w, a dissolved oxygen concentration (DO) of 20%, and a residence time in the stationary phase (RT) of 1 h, resulting in the maximum %PHB (61.66% w/w), and (2) a C/N of 13.3 w/w, a C/P of 5 w/w, a DO of 20%, and a RT of 1 h, leading to the maximum Mw (900 kDa). A final sensitivity analysis confirmed that DO was the most significant parameter for %PHB, whereas C/N was the most important parameter for Mw.
ISSN:2311-5637
2311-5637
DOI:10.3390/fermentation9070624