A Matheuristic Approach for the Multi-Depot Periodic Petrol Station Replenishment Problem
Planning petrol station replenishment is an important logistics activity for all the major oil companies. The studied Multi-Depot Periodic Petrol Station Replenishment problem derives from a real case in which the company must replenish a set of petrol stations from a set of depots, during a weekly...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-01, Vol.12 (3), p.416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Planning petrol station replenishment is an important logistics activity for all the major oil companies. The studied Multi-Depot Periodic Petrol Station Replenishment problem derives from a real case in which the company must replenish a set of petrol stations from a set of depots, during a weekly planning horizon. The company must ensure refuelling according to available visiting patterns, which can be different from customer to customer. A visiting pattern predefines how many times (days) the replenishment occurs during a week and in which visiting days a certain amount of fuel must be delivered. To fulfill the weekly demand of each petrol station, one of the available replenishment plans must be selected among a given set of visiting patterns. The aim is to minimize the total distance travelled by the fleet of tank trucks during the entire planning horizon. A matheuristic approach is proposed, based on the cluster-first route-second paradigm, to solve it. The proposed approach is thoroughly tested on a set of realistic random instances. Finally, a weekly large real instance is considered with 194 petrol stations and two depots. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12030416 |