Amine-Regulated pri-SMTP Oxidation in SMTP Biosynthesis in Stachybotrys: Possible Implication in Nitrogen Acquisition
SMTP (the name SMTP is derived from Stachybotrys microspora triprenyl phenol) is a family of triprenyl phenol secondary metabolites from a black mold, Stachybotrys microspora. Some SMTP congeners exhibit anti-inflammatory and profibrinolytic activities that, in combination, contribute to the treatme...
Gespeichert in:
Veröffentlicht in: | Journal of fungi (Basel) 2022-09, Vol.8 (9), p.975 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SMTP (the name SMTP is derived from Stachybotrys microspora triprenyl phenol) is a family of triprenyl phenol secondary metabolites from a black mold, Stachybotrys microspora. Some SMTP congeners exhibit anti-inflammatory and profibrinolytic activities that, in combination, contribute to the treatment of ischemic stroke. The final step in the SMTP biosynthesis is a non-enzymatic amine conjugation with an o-phthalaldehyde moiety of the precursor pre-SMTP, which can form adducts with proteins and nucleic acids. Thus, pre-SMTP formation should be a precisely regulated, rate-limiting step in the SMTP biosynthesis. To address the mechanism backing this regulation, we purified a metabolite that rapidly disappeared following amine feeding, identifying a novel compound, pri-SMTP. Furthermore, an enzyme, designated as pri-SMTP oxidase, responsible for pri-SMTP conversion to pre-SMTP, was purified. The formation of pri-SMTP, which is regulated by nitrogen and carbon nutrients, occurred in particular septate mycelia. Although pri-SMTP oxidase was expressed constitutively, the consumption of pri-SMTP was accelerated only when a primary amine was fed. Thus, SMTP biosynthesis is regulated by at least three mechanisms: (i) pri-SMTP formation affected by nutrients, (ii) the compartmentalization of pri-SMTP formation/storage, and (iii) amine-regulated pri-SMTP oxidation. Amine-regulated SMTP formation (i.e., amine-capturing with pre-SMTP) may play a role in the nitrogen acquisition/assimilation strategy in S. microspora, since pri-SMTP synthesis occurs on non-preferred nitrogen. |
---|---|
ISSN: | 2309-608X 2309-608X |
DOI: | 10.3390/jof8090975 |