Comparative Analysis of Chemical Composition and Radical-Scavenging Activities in Two Wheat Cultivars
Triticum aestivum (wheat) is one of the most significant crops worldwide. This study compares the chemical composition and radical-scavenging activities of two cultivars of T. aestivum, Saekeumkang wheat (SW) and Baekkang wheat (BW). Sprouted wheatgrass extracts of SW and BW were analyzed using asse...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-11, Vol.14 (22), p.10763 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Triticum aestivum (wheat) is one of the most significant crops worldwide. This study compares the chemical composition and radical-scavenging activities of two cultivars of T. aestivum, Saekeumkang wheat (SW) and Baekkang wheat (BW). Sprouted wheatgrass extracts of SW and BW were analyzed using assessments of total polyphenol and flavonoid contents, liquid chromatography–electrospray ionization/mass spectrometry (LC-ESI/MS), and high-performance liquid chromatography with a photodiode array (HPLC-PDA). Radical-scavenging activities were evaluated using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The results indicated that SW had a higher total polyphenol content than BW, while no significant differences were observed regarding total flavonoid content. HPLC-PDA analysis, guided by LC-ESI/MS, identified four compounds—saponarin, schaftoside, isoorientin, and isovitexin—with isoorientin (3.02 mg/g extract) and schaftoside (4.23 mg/g extract) present in higher concentrations in SW compared to BW. In the ABTS·+ assay, the two samples did not show noticeable differences, with SW displaying a scavenging ability with an IC50 of 3.36 mg/mL, and BW with an IC50 of 3.19 mg/mL. Contrarily, the DPPH assay results showed an inverse trend, suggesting that the radical-scavenging behavior may be influenced by the synergistic and antagonistic interactions of the compounds in SW and BW extracts. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app142210763 |