Presentation of the structure of an Inertial Measurement Unit to evaluate the rotation without using gyros
In this paper a new structure for the inertia measurement unit is presented; the proposed structure consists of three rotary discs around the three main axes in the body, and an accelerometer is mounted on each disc. It is shown in this paper that the proposed structure reduces the effect of disturb...
Gespeichert in:
Veröffentlicht in: | Journal of Space Science and Technology 2020-09, Vol.13 (3), p.69-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; per |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a new structure for the inertia measurement unit is presented; the proposed structure consists of three rotary discs around the three main axes in the body, and an accelerometer is mounted on each disc. It is shown in this paper that the proposed structure reduces the effect of disturbing accelerometer parameters, such as constant and variable bias, as well as noise depletion. Due to the proposed rotational structure, it is necessary to continuously sample the accelerometers. In order to use the sampled data, calculations should be performed in discrete mode. In this paper, a method for combining this information is presented. By examining the proposed equations, the successful performance of this method is shown in the reduction of the effect of three constant bias parameters and the bias of the accelerometer and the measured noise. As well as the efficiency of the proposed method for measuring the acceleration of the device using Numerical representation is shown. |
---|---|
ISSN: | 2423-4516 2008-4560 2423-4516 |
DOI: | 10.30699/jsst.2020.1170 |