Response of soil sulfur availability to elevation and degradation in the Wugong Mountain meadow, China
Vegetation restorations of degraded meadows have been widely implemented. The evaluation of soil nutrient changes as affected by degradation is vital for efficient restorations. However, while macronutrients (nitrogen, phosphorus and potassium) have been widely investigated, sulfur (S) as one import...
Gespeichert in:
Veröffentlicht in: | Plant, soil and environment soil and environment, 2017-01, Vol.63 (6), p.250-256 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vegetation restorations of degraded meadows have been widely implemented. The evaluation of soil nutrient changes as affected by degradation is vital for efficient restorations. However, while macronutrients (nitrogen, phosphorus and potassium) have been widely investigated, sulfur (S) as one important element correlated tightly with other nutrients has not been thoroughly studied. Two studies were conducted to determine changes of sulfur as affected by degradation and elevation gradients. The results showed that available S (AS) changed non-linearly with elevation and the first principal component based on other soil nutrient variables. Soil AS depended on degradation levels and contributed substantially to the separation of meadows with different degradation levels. Moreover, AS responded stronger to changes in elevation gradients and degradation levels compared with other major nutrients. Thereby, AS could be an important nutrient responding to meadow disturbance, which should be considered in future studies on meadow soil nutrients cycling and vegetation restorations. The findings have implications for ecological restoration of degraded meadows with respect to soil nutrient management and conservations. |
---|---|
ISSN: | 1214-1178 1805-9368 |
DOI: | 10.17221/83/2017-PSE |