Optimization of the Geometry of a Microelectromechanical System Testing Device for SiO2—Polysilicon Interface Characterization

Microelectromechanical systems (MEMSs) are small-scale devices that combine mechanical and electrical components made through microfabrication techniques. These devices have revolutionized numerous technological applications, owing to their miniaturization and versatile functionalities. However, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering proceedings 2023-11, Vol.58 (1), p.82
Hauptverfasser: Daniel Calegaro, Stefano Mariani, Massimiliano Merli, Giacomo Ferrari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microelectromechanical systems (MEMSs) are small-scale devices that combine mechanical and electrical components made through microfabrication techniques. These devices have revolutionized numerous technological applications, owing to their miniaturization and versatile functionalities. However, the reliability of MEMS devices remains a critical concern, especially when operating in harsh conditions like high temperatures and humidities. The unknown behavior of their structural parts under cyclic loading conditions, possibly affected by microfabrication defects, poses challenges to ensuring their long-term performance. This research focuses on addressing the reliability problem by investigating fatigue-induced delamination in polysilicon-based MEMS structures, specifically at the interface between SiO2 and polysilicon. Dedicated test structures with piezoelectric actuation and sensing for closed-loop operation were designed, aiming to maximize stress in regions susceptible to delamination. By carefully designing these structures, a localized stress concentration is induced to facilitate the said delamination and help understand the underlying failure mechanism. The optimization was performed by taking advantage of finite element analyses, allowing a comprehensive analysis of the mechanical responses of the movable parts of the polysilicon MEMS under cyclic loading.
ISSN:2673-4591
DOI:10.3390/ecsa-10-16033