Influence of Solid Drug Delivery System Formulation on Poorly Water-Soluble Drug Dissolution and Permeability
The majority of drugs have a low dissolution rate, which is a limiting step for their absorption. In this manuscript, solid dispersions (SD), solid self-microemulsifying drug delivery systems (S-SMEDDS) and solid self-nanoemulsifying drug delivery systems (S-SNEDDS) were evaluated as potential formu...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2015-08, Vol.20 (8), p.14684-14698 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The majority of drugs have a low dissolution rate, which is a limiting step for their absorption. In this manuscript, solid dispersions (SD), solid self-microemulsifying drug delivery systems (S-SMEDDS) and solid self-nanoemulsifying drug delivery systems (S-SNEDDS) were evaluated as potential formulation strategies to increase the dissolution rate of carbamazepine. Influence of increased dissolution rate on permeability of carbamazepine was evaluated using PAMPA test. In S-SMEDDS and S-SNEDDS formulations, the ratio of liquid SMEDDS/SNEDDS and solid carrier (Neusilin(®) UFL2) was varied, and carbamazepine content was constant. In SD formulations, the ratio of carbamazepine and Neusilin(®) UFL2, was varied. Formulations that showed the best dissolution rate of carbamazepine (SD_1:6, SMEDDS_1:1, SNEDDS_1:6) were mutually compared, characterization of these formulations was performed by DSC, PXRD and FT-IR analyses, and a PAMPA test was done. All formulations have shown a significant increase in dissolution rate compared to pure carbamazepine and immediate-release carbamazepine tablets. Formulation S-SMEDDS_1:1 showed the fastest release rate and permeability of carbamazepine. DSC, PXRD and FT-IR analyses confirmed that in S-SMEDDS and S-SNEDDS carbamazepine remained in polymorph form III, and that it was converted to an amorphous state in SD formulations. All formulations showed increased permeability of carbamazepine, compared to pure carbamazepine. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules200814684 |