Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a c...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2022-10, Vol.20 (1), p.1-448, Article 448 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases. |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-022-01651-y |