Automatic language analysis identifies and predicts schizophrenia in first-episode of psychosis

Automated language analysis of speech has been shown to distinguish healthy control (HC) vs chronic schizophrenia (SZ) groups, yet the predictive power on first-episode psychosis patients (FEP) and the generalization to non-English speakers remain unclear. We performed a cross-sectional and longitud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ schizophrenia 2022-06, Vol.8 (1), p.53-53, Article 53
Hauptverfasser: Figueroa-Barra, Alicia, Del Aguila, Daniel, Cerda, Mauricio, Gaspar, Pablo A., Terissi, Lucas D., Durán, Manuel, Valderrama, Camila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated language analysis of speech has been shown to distinguish healthy control (HC) vs chronic schizophrenia (SZ) groups, yet the predictive power on first-episode psychosis patients (FEP) and the generalization to non-English speakers remain unclear. We performed a cross-sectional and longitudinal (18 months) automated language analysis in 133 Spanish-speaking subjects from three groups: healthy control or HC ( n  = 49), FEP ( n  = 40), and chronic SZ ( n  = 44). Interviews were manually transcribed, and the analysis included 30 language features (4 verbal fluency; 20 verbal productivity; 6 semantic coherence). Our cross-sectional analysis showed that using the top ten ranked and decorrelated language features, an automated HC vs SZ classification achieved 85.9% accuracy. In our longitudinal analysis, 28 FEP patients were diagnosed with SZ at the end of the study. Here, combining demographics, PANSS, and language information, the prediction accuracy reached 77.5% mainly driven by semantic coherence information. Overall, we showed that language features from Spanish-speaking clinical interviews can distinguish HC vs chronic SZ, and predict SZ diagnosis in FEP patients.
ISSN:2754-6993
2754-6993
2334-265X
DOI:10.1038/s41537-022-00259-3