Measurement-induced, spatially-extended entanglement in a hot, strongly-interacting atomic system

Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy—promoting random interactions—can help generate and preserve entang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2415-2415, Article 2415
Hauptverfasser: Kong, Jia, Jiménez-Martínez, Ricardo, Troullinou, Charikleia, Lucivero, Vito Giovanni, Tóth, Géza, Mitchell, Morgan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy—promoting random interactions—can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least 1.52(4) × 10 13 of the 5.32(12) × 10 13 participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit. It’s still unclear whether entanglement can be generated, survive, and be observed in hot environments dominated by random collisions. Here, the authors use quantum non-demolition measurement on a hot alkali vapor to put more than ten trillion atoms in a long-lived and spatially extended entangled state.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15899-1