An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells

With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-03, Vol.8 (1), p.14750-14750, Article 14750
Hauptverfasser: Trakarnsanga, Kongtana, Griffiths, Rebecca E., Wilson, Marieangela C., Blair, Allison, Satchwell, Timothy J., Meinders, Marjolein, Cogan, Nicola, Kupzig, Sabine, Kurita, Ryo, Nakamura, Yukio, Toye, Ashley M., Anstee, David J., Frayne, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro -cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture. The generation of a sustainable supply of erythroid progenitors is essential for the reliable production of an in vitro derived red blood cell clinical product. Here the authors immortalize early human erythroblasts to generate the first cell line capable of differentiation into functional adult reticulocytes.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms14750