Inequalities for partial determinants of accretive block matrices

Let A = [ A i , j ] i , j = 1 m ∈ M m ( M n ) be an accretive block matrix. We write det 1 and det 2 for the first and second partial determinants, respectively. In this paper, we show that ∥ det 1 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) m ) m I n ∥ and ∥ det 2 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) n ) n I m ∥ hold f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2023-08, Vol.2023 (1), p.101-7, Article 101
Hauptverfasser: Fu, Xiaohui, Hu, Lihong, Salarzay, Abdul Haseeb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A = [ A i , j ] i , j = 1 m ∈ M m ( M n ) be an accretive block matrix. We write det 1 and det 2 for the first and second partial determinants, respectively. In this paper, we show that ∥ det 1 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) m ) m I n ∥ and ∥ det 2 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) n ) n I m ∥ hold for any unitarily invariant norm ∥ ⋅ ∥ . The two inequalities generalize some known results related to partial determinants of positive-semidefinite block matrices.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-023-03008-x