Inequalities for partial determinants of accretive block matrices
Let A = [ A i , j ] i , j = 1 m ∈ M m ( M n ) be an accretive block matrix. We write det 1 and det 2 for the first and second partial determinants, respectively. In this paper, we show that ∥ det 1 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) m ) m I n ∥ and ∥ det 2 ( Re A ) ∥ ≤ ∥ ( tr ( | A | ) n ) n I m ∥ hold f...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2023-08, Vol.2023 (1), p.101-7, Article 101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
=
[
A
i
,
j
]
i
,
j
=
1
m
∈
M
m
(
M
n
)
be an accretive block matrix. We write det
1
and det
2
for the first and second partial determinants, respectively. In this paper, we show that
∥
det
1
(
Re
A
)
∥
≤
∥
(
tr
(
|
A
|
)
m
)
m
I
n
∥
and
∥
det
2
(
Re
A
)
∥
≤
∥
(
tr
(
|
A
|
)
n
)
n
I
m
∥
hold for any unitarily invariant norm
∥
⋅
∥
. The two inequalities generalize some known results related to partial determinants of positive-semidefinite block matrices. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-023-03008-x |