Evaluation and Projection of Global Burned Area Based on Global Climate Models and Satellite Fire Product

Fire plays a critical role in both the formation and degradation of ecosystems; however, there are still significant uncertainties in the estimation of burned areas (BAs). This study systematically evaluated the performance of ten global climate models (GCMs) in simulating global and regional BA dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-12, Vol.16 (24), p.4751
Hauptverfasser: Wang, Xueyan, Di, Zhenhua, Zhang, Wenjuan, Zhang, Shenglei, Sun, Huiying, Tian, Xinling, Meng, Hao, Wang, Xurui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fire plays a critical role in both the formation and degradation of ecosystems; however, there are still significant uncertainties in the estimation of burned areas (BAs). This study systematically evaluated the performance of ten global climate models (GCMs) in simulating global and regional BA during a historical period (1997–2014) using the Global Fire Emissions Database version 4.1s (GFED4s) satellite fire product. Then, six of the best models were combined using Bayesian Model Averaging (BMA) to predict future BA under three Shared Socioeconomic Pathways (SSPs). The results show that the NorESM2-LM model excelled in simulating both global annual and monthly BA among the GCMs. GFDL-ESM4 and UKESM1-0-LL of the GCMs had the highest Pearson’s correlation coefficient (PCC), but they also exhibited the most significant overestimation of monthly BA variations. The BA fraction (BAF) for GCMs was over 90% for small fires (50%). After evaluation and screening, six models (CESM2-WACCM-FV2, NorESM2-LM, CMCC-ESM2, CMCC-CM2-SR5, GFDL-ESM4, and UKESM1-0-LL) were selected for weighting in an optimal ensemble simulation using BMA. Based on the optimal ensemble, future projections indicated a continuous upward trend across all three SSPs from 2015 to 2100, except for a slight decrease in SSP126 between 2071 and 2100. It was found that as the emission scenarios intensify, the area experiencing a significant increase in BA will expand considerably in the future, with a generally high level of reliability in these projections across most regions. This study is crucial for understanding the impact of climate change on wildfires and for informing fire management policies in fire-prone areas in the future.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16244751