A system-level approach identifies HIF-2α as a critical regulator of chondrosarcoma progression
Chondrosarcomas, malignant cartilaginous neoplasms, are capable of transitioning to highly aggressive, metastatic, and treatment-refractory states, resulting in significant patient mortality. Here, we aim to uncover the transcriptional program directing such tumor progression in chondrosarcomas. We...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-10, Vol.11 (1), p.5023-5023, Article 5023 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chondrosarcomas, malignant cartilaginous neoplasms, are capable of transitioning to highly aggressive, metastatic, and treatment-refractory states, resulting in significant patient mortality. Here, we aim to uncover the transcriptional program directing such tumor progression in chondrosarcomas. We conduct weighted correlation network analysis to extract a characteristic gene module underlying chondrosarcoma malignancy. Hypoxia-inducible factor-2α (HIF-2α, encoded by
EPAS1
) is identified as an upstream regulator that governs the malignancy gene module. HIF-2α is upregulated in high-grade chondrosarcoma biopsies and
EPAS1
gene amplification is associated with poor prognosis in chondrosarcoma patients. Using tumor xenograft mouse models, we demonstrate that HIF-2α confers chondrosarcomas the capacities required for tumor growth, local invasion, and metastasis. Meanwhile, pharmacological inhibition of HIF-2α, in conjunction with the chemotherapy agents, synergistically enhances chondrosarcoma cell apoptosis and abolishes malignant signatures of chondrosarcoma in mice. We expect that our insights into the pathogenesis of chondrosarcoma will provide guidelines for the development of molecular targeted therapeutics for chondrosarcoma.
Chondrosarcomas are frequently aggressive, understanding the transcriptional changes associated with progression may help in developing new treatments. Here, the authors show that HIF-2α is increased in expression on progression and pharmacological inhibition of the protein together with chemotherapy is a useful strategy for controlling tumour growth in mice. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-18817-7 |