Simulative and Experimental Investigation of the Ring Creeping Damage Mechanism Considering the Training Effect in Large-Sized Bearings
In this work, an advanced, numerical simulation method based on finite element analyses was developed in order to simultaneously take into account both roller- and structural-induced ring creeping phenomena. Ring creeping in general refers to a failure mode caused by a (non-bolted) bearing ring rota...
Gespeichert in:
Veröffentlicht in: | Machines (Basel) 2023-05, Vol.11 (5), p.543 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, an advanced, numerical simulation method based on finite element analyses was developed in order to simultaneously take into account both roller- and structural-induced ring creeping phenomena. Ring creeping in general refers to a failure mode caused by a (non-bolted) bearing ring rotating relatively to its adjacent component such as, e.g., shaft or housing during operation. In particular, the coefficient of friction at the contact interface between bearing ring and adjacent component has a crucial influence. In order to consider this effect, a bearing ring creeping test rig based on component-like specimen was developed. Experimental results with respect to (i) measured creeping parameters such as creeping distance and (ii) the coefficient of friction due to run-in effects were described. Finally, experimental and numerical results were compared qualitatively to approve the reasonableness of the simulation model. The developed simulation approach enables the consideration of the entire drive train system within the micro-scale creeping evaluation procedure and therefore supports both drive train and bearing design-specific optimization measures in order to increase the reliability and robustness of a main bearing arrangement. |
---|---|
ISSN: | 2075-1702 2075-1702 |
DOI: | 10.3390/machines11050543 |