The optimization of silica gel synthesis from chemical bottle waste using response surface methodology

To reduce the amount of hazardous chemical bottle waste in the environment, we report the optimization research of silica extraction in chemical bottle waste into silica gel. Alkali fusion and sol–gel process were utilised to prepare silica gel effectively. The alkali fusion process was carried out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of chemistry 2022-12, Vol.15 (12), p.104329, Article 104329
Hauptverfasser: Ni'mah, Yatim Lailun, Suprapto, Suprapto, Subandi, Ayu Perdana K., Yuningsih, Nabila Eka, Pertiwi, Anggun Cahyaning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reduce the amount of hazardous chemical bottle waste in the environment, we report the optimization research of silica extraction in chemical bottle waste into silica gel. Alkali fusion and sol–gel process were utilised to prepare silica gel effectively. The alkali fusion process was carried out by adding sodium hydroxide to produce sodium silicate. Afterwards, silica gel was prepared by the sol–gel method using hydrochloric acid. Box-Behnken Design (BBD) was applied to Optimisation factors the poptimiseactors affecting the silica recovery. The factors that optimised mass ratio, particle size, and temperature. The optimum recovery of silica gel was obtained by SiO2: NaOH mass ratio of 1:3, the particle size of 63–74 µm, and a temperature of 800 °C. The purity of silica gel optimum is 63.74% characterised using X-ray fluorescence. The structure of silica gel is the appearance of amorphous peaks at 2θ 20-30° characterised using an x-ray diffractogram. The silica gel surface was characterises using scanning electron microscopy-energy dispersive x-ray. It showed an irregular surface and characteristic showed that silica gel had a radius of 15.74 nm and a specific surface area of 297.08 m2.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2022.104329