Quantitative Evaluation of the Crop Yield, Soil-Available Phosphorus, and Total Phosphorus Leaching Caused by Phosphorus Fertilization: A Meta-Analysis
Phosphorus (P) leaching from excessive P application is the primary pathway of P losses in agricultural soils. Different P fertilizer practices have mixed effects on P leaching. We conducted a meta-analysis of the relevant literature regarding the response of crop yields, soil-available P (AP), and...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2023-09, Vol.13 (9), p.2436 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) leaching from excessive P application is the primary pathway of P losses in agricultural soils. Different P fertilizer practices have mixed effects on P leaching. We conducted a meta-analysis of the relevant literature regarding the response of crop yields, soil-available P (AP), and total P (TP) leaching to reduced P input (RP) and an inorganic-organic combination fertilizer (NPKM) for different agricultural land-use types. Compared to conventional P application (CP), RP (10~90% reduction) did not reduce crop yields in vegetable fields (experiments were 1~4 years) but significantly reduced cereal yields by 4.57%. Compared to chemical fertilizer (NPK), NPKM significantly increased cereal yields by 12.73%. Compared to CP, RP significantly reduced AP at 0~60 cm in vegetable and cereal fields. The greatest reduction occurred at 20~40 cm in vegetable fields (40.29%) and 0~20 cm in cereal fields (34.45%). Compared to NPK, NPKM significantly increased the AP at 0~60 cm in vegetable fields, with the greatest increase (52.44%) at 20~40 cm. The AP at 0~40 cm in cereal fields significantly increased under the NPKM treatment, with the greatest increase at 0~20 cm (76.72%). Compared to CP, RP significantly decreased TP leaching by 16.02% and 31.50% in vegetable and cereal fields, respectively. Compared to NPK, NPKM significantly increased TP leaching in vegetable fields (30.43%); no significant difference in leaching occurred in cereal fields. P leaching, in response to RP, was influenced by the P amounts applied (34.49%); soil organic matter (14.49%); and TP (12.12%). P leaching in response to NPKM was influenced by multiple factors: rainfall (16.05%); soil organic matter (12.37%); soil bulk density (12.07%); TP (11.65%); pH (11.41%). NPKM was more beneficial for improving yields in cereal fields with low soil fertility and lower P-leaching risks. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy13092436 |