Plant growth-promoting bacterial consortia improved the physiology and growth of maize by regulating osmolytes and antioxidants balance under salt-affected field conditions
This study was undertaken to see how microbial consortia influenced maize development and yield under salt-affected conditions. The efficacy of the pre-isolated bacterial strains Burkholderia phytofirmans, Bacillussubtilis, Enterobacter aerogenes, and Pseudomonas syringae and Pseudomonas fluorescens...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-07, Vol.9 (7), p.e17816-e17816, Article e17816 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study was undertaken to see how microbial consortia influenced maize development and yield under salt-affected conditions. The efficacy of the pre-isolated bacterial strains Burkholderia phytofirmans, Bacillussubtilis, Enterobacter aerogenes, and Pseudomonas syringae and Pseudomonas fluorescens to decrease the detrimental effects of salt on maize was tested in four distinct combinations using Randomized Complete Block Design with three replicates. The results revealed that these strains were compatible and collaborated synergistically, with an 80% co-aggregation percentage under salt-affected conditions. Following that, these strains were tested for their ability to increase maize growth and yield under salt-affected field conditions. The photosynthetic rate (11–50%), relative water content (10–34%), and grain yield (13–21%) of maize were all increased by these various combinations. However, when Burkholderia phytofirmans, Enterobacter aerogenes and Pseudomonas fluorescens were combined, the greatest increase was seen above the un-inoculated control. Furthermore, as compared to the un-inoculated control, the same combination resulted in a 1.5-fold increase in catalase and a 2.0-fold increase in ascorbate concentration. These findings showed that a multi-strain consortium might boost maize's total yield response as a result of better growth under salt stress. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e17816 |