Global Boundedness in a Logarithmic Keller–Segel System

In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-06, Vol.11 (12), p.2743
Hauptverfasser: Liu, Jinyang, Tian, Boping, Wang, Deqi, Tang, Jiaxin, Wu, Yujin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction of the energy functional containing ∫Ω|v|4v2 with v>0. It is noteworthy that the inequality used in the paper may be applied to study other chemotaxis systems.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11122743