Global Boundedness in a Logarithmic Keller–Segel System
In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-06, Vol.11 (12), p.2743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction of the energy functional containing ∫Ω|v|4v2 with v>0. It is noteworthy that the inequality used in the paper may be applied to study other chemotaxis systems. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11122743 |