Study on the mechanical properties of embankment soil under long-term immersion conditions

During flood season, embankments are often submerged in high water levels for extended periods, leading to deterioration in their soil mechanics performance and increasing the risk of slope instability and other hazards. In order to investigate the changes in mechanical properties of embankment slop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in materials 2023-10, Vol.10
Hauptverfasser: Zhang, Kun, Feng, Di, Wang, Zhikui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During flood season, embankments are often submerged in high water levels for extended periods, leading to deterioration in their soil mechanics performance and increasing the risk of slope instability and other hazards. In order to investigate the changes in mechanical properties of embankment slopes during long-term water immersion, direct shear tests were conducted. Scanning electron microscopy, chemical composition analysis, and laser particle size analysis were conducted on samples taken at different immersion periods. Clay samples were taken from the embankments at Jiangxinzhou in Nanjing, Jiangsu Province, China. Results showed the shear strength of the soil gradually decreases with the increase of immersion time, while the cohesive force and internal friction angle gradually decrease as well. This suggests that immersion has a softening effect on the shear strength of the soil. As the immersion time increases, the colloidal particles (soluble salt) rapidly dissolves, the microstructure of the soil is destroyed, and sticky particles increases, resulting in a change in the shear strength of the soil. The research results provide a basis for flood control and prevention of embankments immersed in high water levels for long periods during the flood season.
ISSN:2296-8016
2296-8016
DOI:10.3389/fmats.2023.1270082