Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia

Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.362-362, Article 362
Hauptverfasser: Meng, Xueming, Xu, Cong, Li, Jiawei, Qiu, Benhua, Luo, Jiajun, Hong, Qin, Tong, Yujie, Fang, Chuyu, Feng, Yanyan, Ma, Rui, Shi, Xiangyi, Lin, Cheng, Pan, Chen, Zhu, Xueliang, Yan, Xiumin, Cong, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospinal fluid, however, remain obscure. Here, we present near-atomic resolution cryo-EM structures of mouse RS head-neck complex in both monomer and dimer forms and reveal the intrinsic flexibility of the dimer. We also map the genetic mutations related to primary ciliary dyskinesia and asthenospermia on the head-neck complex. Moreover, we present the cryo-ET and sub-tomogram averaging map of mouse ependymal cilia and build the models for RS1-3, IDAs, and N-DRC. Contrary to the conserved RS structure, our cryo-ET map reveals the lack of IDA-b/c/e and the absence of Tektin filaments within the A-tubule of doublet microtubules in ependymal cilia compared with mammalian respiratory cilia and sperm flagella, further exemplifying the structural diversity of mammalian motile cilia. Our findings shed light on the stepwise mammalian RS assembly mechanism, the coordinated rigid and elastic RS-CP interaction modes beneficial for the regulation of asymmetric ciliary beating, and also facilitate understanding on the etiology of ciliary dyskinesia-related ciliopathies and on the ependymal cilia in the development of hydrocephalus. Radial spokes (RS) are crucial in coordinating ciliary motility. Here, authors use cryo-EM and cryo-ET to gain insight into mammalian RS divergence in ependymal cilia, RS assembly mechanism and the structure-function relationships of ciliary and flagellar axonemes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44577-1