Multi-Sensor Context-Aware Based Chatbot Model: An Application of Humanoid Companion Robot

In aspect of the natural language processing field, previous studies have generally analyzed sound signals and provided related responses. However, in various conversation scenarios, image information is still vital. Without the image information, misunderstanding may occur, and lead to wrong respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (15), p.5132
Hauptverfasser: Kuo, Ping-Huan, Lin, Ssu-Ting, Hu, Jun, Huang, Chiou-Jye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In aspect of the natural language processing field, previous studies have generally analyzed sound signals and provided related responses. However, in various conversation scenarios, image information is still vital. Without the image information, misunderstanding may occur, and lead to wrong responses. In order to address this problem, this study proposes a recurrent neural network (RNNs) based multi-sensor context-aware chatbot technology. The proposed chatbot model incorporates image information with sound signals and gives appropriate responses to the user. In order to improve the performance of the proposed model, the long short-term memory (LSTM) structure is replaced by gated recurrent unit (GRU). Moreover, a VGG16 model is also chosen for a feature extractor for the image information. The experimental results demonstrate that the integrative technology of sound and image information, which are obtained by the image sensor and sound sensor in a companion robot, is helpful for the chatbot model proposed in this study. The feasibility of the proposed technology was also confirmed in the experiment.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21155132