Phytochemical Substances—Mediated Synthesis of Zinc Oxide Nanoparticles (ZnO NPS)

Artemisia absinthium (A. absinthium) leaf extract was successfully used to create zinc oxide nanoparticles (ZnO NPs), and their properties were investigated via several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganics 2023-08, Vol.11 (8), p.328
Hauptverfasser: Alharbi, Fawzeeh Nayif, Abaker, Zulfa Mohamed, Makawi, Suzan Zein Alabdeen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artemisia absinthium (A. absinthium) leaf extract was successfully used to create zinc oxide nanoparticles (ZnO NPs), and their properties were investigated via several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared (FTIR), and ultraviolet–visible spectroscopy (UV–Vis spectroscopy). SEM analysis confirmed the spherical and elliptical shapes of the particles. Three different zinc peaks were observed via EDX at the energies of 1, 8.7, and 9.8 keV, together with a single oxygen peak at 0.5 keV. The XRD analysis identified ZnO NPs as having a hexagonal wurtzite structure, with a particle size that decreased from 24.39 to 18.77 nm, and with an increasing surface area (BET) from 4.003 to 6.032 m2/g for the ZnO (without extract) and green ZnO NPs, respectively. The FTIR analysis confirmed the groups of molecules that were accountable for the stabilization and minimization of the ZnO NPs, which were apparent at 3400 cm. Using UV–Vis spectroscopy, the band-gap energies (Egs) for the green ZnO and ZnO (without extract) NPs were estimated, and the values were 2.65 and 2.79 eV, respectively.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics11080328