Determinants of The Grade A Embryos in Infertile Women; Zero-Inflated Regression Model

In assisted reproductive technology, it is important to choose high quality embryos for embryo transfer. The aim of the present study was to determine the grade A embryo count and factors related to it in infertile women. This historical cohort study included 996 infertile women. The main outcome wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell journal (Yakhteh) 2017-10, Vol.19 (3), p.506-511
Hauptverfasser: Almasi-Hashiani, Amir, Ghaheri, Azadeh, Omani Samani, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In assisted reproductive technology, it is important to choose high quality embryos for embryo transfer. The aim of the present study was to determine the grade A embryo count and factors related to it in infertile women. This historical cohort study included 996 infertile women. The main outcome was the number of grade A embryos. Zero-Inflated Poisson (ZIP) regression and Zero-Inflated Negative Binomial (ZINB) regression were used to model the count data as it contained excessive zeros. Stata software, version 13 (Stata Corp, College Station, TX, USA) was used for all statistical analyses. After adjusting for potential confounders, results from the ZINB model show that for each unit increase in the number 2 pronuclear (2PN) zygotes, we get an increase of 1.45 times as incidence rate ratio (95% confidence interval (CI): 1.23-1.69, P=0.001) in the expected grade A embryo count number, and for each increase in the cleavage day we get a decrease 0.35 times (95% CI: 0.20-0.61, P=0.001) in expected grade A embryo count. There is a significant association between both the number of 2PN zygotes and cleavage day with the number of grade A embryos in both ZINB and ZIP regression models. The estimated coefficients are more plausible than values found in earlier studies using less relevant models.
ISSN:2228-5806
2228-5814
DOI:10.22074/cellj.2017.4214.