A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems

The output characteristics of photovoltaic (PV) arrays vary with the change of environment, and maximum power point (MPP) tracking (MPPT) techniques are thus employed to extract the peak power from PV arrays. Based on the analysis of existing MPPT methods, a novel incremental conductance (INC) MPPT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2016-04, Vol.9 (4), p.288
Hauptverfasser: Li, Chendi, Chen, Yuanrui, Zhou, Dongbao, Liu, Junfeng, Zeng, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The output characteristics of photovoltaic (PV) arrays vary with the change of environment, and maximum power point (MPP) tracking (MPPT) techniques are thus employed to extract the peak power from PV arrays. Based on the analysis of existing MPPT methods, a novel incremental conductance (INC) MPPT algorithm is proposed with an adaptive variable step size. The proposed algorithm automatically regulates the step size to track the MPP through a step size adjustment coefficient, and a user predefined constant is unnecessary for the convergence of the MPPT method, thus simplifying the design of the PV system. A tuning method of initial step sizes is also presented, which is derived from the approximate linear relationship between the open-circuit voltage and MPP voltage. Compared with the conventional INC method, the proposed method can achieve faster dynamic response and better steady state performance simultaneously under the conditions of extreme irradiance changes. A Matlab/Simulink model and a 5 kW PV system prototype controlled by a digital signal controller (TMS320F28035) were established. Simulations and experimental results further validate the effectiveness of the proposed method.
ISSN:1996-1073
1996-1073
DOI:10.3390/en9040288