On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sahand communications in mathematical analysis 2016-12, Vol.3 (1), p.53-61
1. Verfasser: Ali Reza Khoddami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct product and the composition of two strongly Jordan zero-product preserving maps are again  strongly Jordan zero-product preserving maps. But this fact is not the case for tensor product of them in general. Finally, we prove  that every $*-$preserving linear map from a normed $*-$algebra into a $C^*-$algebra that strongly preserves Jordan zero-products is necessarily continuous.
ISSN:2322-5807
2423-3900