Safe Control of a Reaction Wheel Pendulum Using Control Barrier Function
This paper presents a safe control applied to a reaction wheel pendulum, assuring that the system satisfies stability objectives and safety constraints. Safety constraints are specified in terms of a set invariance and verified through control barrier functions (CBFs). The existence of a CBF satisfy...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a safe control applied to a reaction wheel pendulum, assuring that the system satisfies stability objectives and safety constraints. Safety constraints are specified in terms of a set invariance and verified through control barrier functions (CBFs). The existence of a CBF satisfying specific conditions implies set invariance. The control framework considered unifies stability objectives, expressed as a nominal control law, and safety constraints, expressed as a CBF, through quadratic programming (QP). The work focuses on safety; thus, the nominal control law applied was a simple linear quadratic regulator (LQR). The safety constraint is considered to guarantee that the pendulum angular position never exceeds a predetermined value. The control framework was applied and analyzed considering continuous-time and discrete-time situations. The results from numerical simulations and experimental tests indicate that the pendulum is well stabilized while satisfying a safety constraint when forced to leave the safe set. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3018713 |