On Critical Circle Homeomorphisms with Infinite Number of Break Points
We prove that a critical circle homeomorphism with infinite number of break points without periodic orbits is conjugated to the linear rotation by a quasisymmetric map if and only if its rotation number is of bounded type. And we also prove that any two adjacent atoms of dynamical partition of a uni...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.212-217-525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a critical circle homeomorphism with infinite number of break points without periodic orbits is conjugated to the linear rotation by a quasisymmetric map if and only if its rotation number is of bounded type. And we also prove that any two adjacent atoms of dynamical partition of a unit circle are comparable. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/378742 |